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Abstract. We study convergence properties of Dikin’s affine scaling algorithm applied to nonconvex
quadratic minimization. First, we show that the objective function value either diverges or converges
Q-linearly to a limit. Using this result, we show that, in the case of box constraints, the iterates
converge to a unique point satisfying first-order and weak second-order optimality conditions, as-
suming the objective function Hessian Q is rank dominant with respect to the principal submatrices
that are maximally positive semidefinite. Such Q include matrices that are positive semidefinite or
negative semidefinite or nondegenerate or have negative diagonals. Preliminary numerical experience
is reported.
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1. Introduction

We consider the nonconvex quadratic program (QP):

min f �x�
�= 1

2
xTQx+ cTx subject to Ax = b� 0 � x � u� (1)

where Q ∈ �n×n is symmetric, A ∈ �m×n, b ∈ �m, c ∈ �n, and u ∈ �0���n. We
allow m = 0, in which case (1) has only bound constraints. The case of Q = 0
corresponds to linear program (LP). We assume that (1) has a feasible interior
solution x, i.e., Ax = b and 0 < x < u.

An important class of algorithms for solving (1) is the affine-scaling (AS) al-
gorithm, originally proposed by Dikin (1967, 1974, 1988) and rediscovered by
Barnes (1986) and Vanderbei et al. (1986) for LP and by Ye (1989) and Ye and
Tse (1989) for QP as simplification of Karmarkar’s algorithm (1984). In the AS
algorithm, starting with a feasible interior solution x0, it generates xk+1 from xk,
for k = 0�1� � � � , by

xk+1 �= xk + tkd
k� (2)
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where dk is a global optimal solution of the trust-region subproblem:

min
1
2
dTQd+ �f�xk�Td subject to Ad = 0� ��Sk�−1d� � �� (3)

with Sk
�= diag�skj �

n
j=1, s

k
j

�= min�xkj � uj − xkj �, and

tk
�= argmin

{
f �xk + tdk� � 1 � t � min

{
t̄� � min

j�dkj >0

uj − xkj

dkj
�� min

j�dkj <0

xkj

−dkj

}}
�

(4)

Here � ∈ �0�1� and t̄ ∈ �1��� are fixed constants. Notice that tk is well defined
and tk = 1 if t̄ = 1. A related stepsize rule is given by Bonnans and Bouhtou
(1995). The subproblem (3) has been much studied and is known to be efficiently
solvable; see Conn, Gould, and Toint (2000) and Ye (1992). It is readily seen from
� < 1 that Axk = b and 0 < xk < u for all k. Hence skj > 0 for all j and k.

There have been extensive studies of the global convergence and local lin-
ear convergence of the AS algorithm (2)–(4) for LP (Dikin, 1974; Barnes, 1986;
Tsuchiya, 1991, 1992; Tseng and Luo, 1992; Monteiro et al., 1993; Saigal, 1996;
Dikin and Roos, 1997), for convex QP (Ye and Tse, 1989; Sun, 1993; Bonnans
and Bouhtou, 1995; Monteiro and Tsuchiya, 1998), and nonconvex QP (Ye, 1992;
Bonnans and Bouhtou, 1995; Tseng and Ye, 2000). This algorithm is a feasible
method in that it needs to be initialized with a feasible interior solution. It is
a short-step method when we set t̄ = 1. It is a second-order method in that
the objective function of (3) has a quadratic term. There have also been stud-
ies of infeasible method for LP by Muramatsu and Tsuchiya (1996), and long-
step methods for LP, corresponding to setting t̄ = �; see Castillo and Barnes
(2000), Dikin (1991), Gonzaga (1990), Mascarenhas (1997), Terlaky and Tsuchiya
(1999), Tsuchiya and Muramatsu (1995), Tsuchiya and Monteiro (1996), Vander-
bei and Lagarias (1990), Vanderbei and Hall (1993). The stepsize rule (4) mediates
between short-step and long-step methods. Extensions to linearly constrained con-
vex minimization (Gonzaga and Carlos, 1990; Sun, 1996) and nonconvex minimiz-
ation (Bonnans and Pola, 1997; Monteiro and Wang, 1998; Conn at al., 2000), have
also been studied, as have variants for LP (Monma and Morton, 1987; Vanderbei,
1989).

In the convex case Q 
 0, global convergence of the AS algorithm (2)–(4) with
t̄ = 1 has been fully analyzed by Monteiro and Tsuchiya (1998), using results
from Dikin and Roos (1997), Sun (1993), Tsuchiya and Muramatsu (1995). In
particular, they established convergence of �xk� to a global optimal solution x∗ and
convergence of �pk� to the analytic center of a face of the optimal dual solution
set associated with �f�x∗�, assuming the optimal solution set of QP is nonempty
and bounded; see Theorem 4.15 of Monteiro and Tsuchiya (1998). Our analysis
will focus on the global convergence and local linear convergence of the AS al-
gorithm for nonconvex QP. Previous analyses by Bonnans and Bouhtou (1995)
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and Ye (1992) require certain primal and dual nondegeneracy assumptions on the
problem. Our analysis will not require such assumptions. In particular, we show
that �f �xk�� converges linearly to its limit without any nondegeneracy assumption
(see Theorem 1). Using this result, we show that, in the case of box constraints
and Q being rank dominant with respect to its maximally positive-semidefinite
principal submatrices, �xk� converges globally to a feasible solution satisfying
first- and weak second-order optimality conditions for (1)–(see Theorem 2). The
nonconvex case is considerably more difficult to analyze than the convex case. For
example, convergence to a non-local-minimum is possible in the nonconvex case;
see Tseng and Ye (2000).

In studying the AS algorithm (2)–(4), it is sometimes assumed for simplicity
that ui = � for all i; see, e.g., Monteiro and Tsuchiya (1998) and Ye (1992). While
(1) can be transformed into this special case by introducing additional variables and
equality constraints, the transformed problem has greater size and the AS algorithm
applied to the transformed problem is not equivalent to the AS algorithm applied
to the original problem (1). For this reason we do not assume ui = � for all i
and we work directly with finite upper bounds; also see Section 4 of Bonnans and
Bouhtou (1995).

Throughout, points in �n are viewed as column vectors, superscript T denotes
tranpose, and � · �, � · �1, � · �� denote the 2-norm, 1-norm, �-norm, respectively.
For any symmetric matrix B ∈ �n×n, we write B 
 0 (respectively, B 
 0) to
mean B is positive semidefinite (respectively, positive definite). For any B ∈ �m×n,
Bij and Bj denote, respectively, the �i� j�th entry and the jth column of B. For any
I ⊆ �1� � � � �m� and J ⊆ �1� � � � � n�, BIJ denotes the submatrix of B obtained by
removing rows i �∈ I and columns j �∈ J . For any x ∈ �n, we denote by xj the
jth component of x and, for any J ⊆ �1� � � � � n�, by xJ the subvector of x obtained
by removing xj , j �∈ J . For any x ∈ �n and y ∈ �m, we write �x� y� to mean

[
x

y

]
.

Also,
�= means “define”.

2. Basic Properties

In this section we derive some basic properties of the AS algorithm that will be
used to analyze its convergence. It is well known that, by defining

Qk �= SkQSk� Ak �= ASk� ck
�= Sk�f �xk��

the subproblem (3) can be written equivalently as

min
1

2
wTQkw+ �ck�Tw subject to Akw = 0� �w� � ��

Let Bk ∈ �n×% be a matrix whose columns form an orthonormal basis for Null�Ak�.
Then Akw = 0 if and only if w = Bkv for some v ∈ �%, so the above subproblem
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reduces to the unconstrained subproblem; see page 293 of Ye (1992):

min
1
2
vT �Bk�TQkBkv+ �ck�TBkv subject to �v� � ��

By using a well-known optimality condition for this unconstrained subproblem,
e.g., Conn, Gould, and Toint (2000), Ye (1992), it can be seen that dk, together
with some Lagrange multipliers 'k � 0 and pk+1 ∈ �m, satisfies the following
necessary and sufficient optimality condition for (3):

�Q+ 'k�S
k�−2�dk + �f�xk�−ATpk+1 = 0�

�Bk�TQkBk + 'kI 
 0�
'k���Sk�−1dk� − �� = 0�

(5)

The second relation says that Q+ 'k�S
k�−2 is positive semidefinite over Null�A�.

Letting
r̃ k

�= �f�xk�−ATpk+1�

it can be shown using (5) that dk is a global minimum of the Lagrangian

1
2
dT �Q+ 'k�S

k�−2�d+ �r̃k�Td

over Null�A�. Thus

1
2
�dk�T �Q+ 'k�S

k�−2�dk + �r̃k�Tdk � 0

or, equivalently,

1
2
�dk�TQdk + �r̃k�Tdk � −1

2
'k��Sk�−1dk�2�

This implies

f �xk+1�− f �xk� � f �xk + dk�− f �xk�

= 1
2
�dk�TQdk + �f�xk�Tdk

= 1
2
�dk�TQdk + �r̃k�Tdk

� −1
2
'k��Sk�−1dk�2� (6)

where the first inequality uses (2) and (4); the last equality also uses Adk = 0.
Also, denoting

rk+1 �= Qdk + r̃ k = �f�xk+1�−ATpk+1�

we obtain from (5) that

'k�S
k�−2dk + rk+1 = 0� (7)

Using (5)–(7), we have the following descent lemma for the AS algorithm.
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LEMMA 1 If 'k = 0, then xk+1 is a global optimal solution of (1). If 'k > 0, then

f �xk+1�− f �xk� � −1
2
��Skrk+1�� (8)

Proof. If 'k = 0, then (7) implies rk+1 = 0. Also, by (5), Q is positive
semidefinite over Null�A�, so, for any feasible solution x of (1), we have from
A�x− xk+1� = 0 that

f �x�− f �xk+1� = �rk+1�T �x− xk+1�+ 1
2
�x− xk+1�TQ�x− xk+1� � 0�

Thus xk+1 is a global optimal solution of (1).
If 'k > 0, then (5) implies ��Sk�−1dk� = � or, using (7), �Skrk+1�/'k = �.

This together with (6) yields (8).

The next lemma shows that Sk changes gradually with k.

LEMMA 2 For k = 0�1� � � � , we have

sk+1
j � �1+ tk��s

k
j � j = 1� � � � � n�

Proof. Fix any k ∈ �0�1� � � � �. For each j with skj = xkj , we have xkj � uj/2 and
�dkj �/xkj � �, so that

xk+1
j = xkj + tkd

k
j � �1+ tk��x

k
j �

Thus, if sk+1
j = xk+1

j , this implies sk+1
j � �1 + tk��s

k
j . If sk+1

j = uj − xk+1
j ,

this implies uj/2 � xk+1
j , so that sk+1

j = uj − xk+1
j � uj/2 � xk+1

j � �1 +
tk��x

k
j = �1 + tk��s

k
j . For each j with skj = uj − xkj , we have xkj � uj/2 and

�dkj �/�uj − xkj � � �, so that

uj − xk+1
j = �uj − xkj �− tkd

k
j � �1+ tk���uj − xkj ��

Thus, if sk+1
j = uj − xk+1

j , this implies sk+1
j � �1 + tk��s

k
j . If sk+1

j = xk+1
j , this

implies uj/2 � xk+1
j , so that sk+1

j = xk+1
j � uj/2 � uj − xk+1

j � �1 + tk���uj −
xkj � = �1+ tk��s

k
j .

3. Linear Convergence in Objective Value

In this section we show that �f �xk�� either diverges or converges linearly to a limit.
This result extends Theorem 1 of Sun (1993) for the convex case Q 
 0, which in
turn extends Theorem 1 of Tseng and Luo (1992) for the linear case Q = 0; also
see Lemma 2.4 of Monteiro and Tsuchiya (1998) and Lemma 4.11 of Monteiro and
Wang (1998) for the convex/concave case. The proof uses ideas from the proofs of
Lemma 3.1 and Theorem 3.2 of Luo and Tseng (1992).
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THEOREM 1 Either �f �xk�� ↓ −� or �f �xk�� converges Q-linearly to a limit
*, i.e., there exist index k̄ and + ∈ �0�1� such that

0 � f �xk+1�− * � +�f �xk�− *� ∀k � k̄�
Proof. Since f �xk+1� � f �xk� for all k by (8), then either �f �xk�� ↓ −� or

else �f �xk�� converges to a limit *. We consider this latter case. Then, �f �xk+1�−
f �xk�� → 0. By Lemma 1, it suffices to consider the case of 'k > 0 for all k.
Denote

,k
�= Skrk�

Then, for each k � 1, Lemma 2 and Sk being diagonal imply

�,k� � �1+ tk−1���Sk−1rk� � 2�1+ t̄���f �xk−1�− f �xk��/�→ 0 as k→ ��
(9)

where the second inequality uses Lemma 1 and tk � t̄. For any pair of disjoint
subsets I� J of �1� � � � � n�, let

KI�J

�=



k ∈ �0�1� � � � � �

skj = xkj �
√
�,kj � ∀j ∈ I�

skj = uj − xkj �
√
�,kj � ∀j ∈ J�

�rkj � <
√
�,kj � ∀j �∈ I ∪ J



� (10)

Since skj �rkj � = �,kj � so that either skj �

√
�,kj � or else �rkj � <

√
�,kj �, it follows that

each k ∈ �0�1� � � � � belongs to KI�J for some I� J . Since the number of pairs I� J is
finite, there is at least one pair I� J such that KI�J is infinite.

Consider any I� J such that KI�J is infinite. Let K
�= �1� � � � � n� \ �I ∪ J�. Let

L
�= �j ∈ �1� � � � � n� � uj <��. Then, for all k ∈ KI�J , the following linear system

xI = skI � xJ = uJ − skJ � QT
j x−AT

j p = −cj + rkj ∀j ∈ K�
x � 0� xL � uL� Ax = b�

(11)

has a solution, e.g., �x�p� = �xk�pk�. Now, (10) implies

��skI � skJ � rkK��2
� �,k�1 ∀k ∈ KI�J � (12)

so (9) yields ��skI � s
k
J � r

k
K��k∈KI�J → 0. Thus, the right-hand side of (11) is uniformly

bounded for k ∈ KI�J , so an error bound of Hoffman (1952) implies that (11) has a
solution �yk� qk� that is bounded for k ∈ KI�J . Since ��skI � s

k
J � r

k
K��k∈KI�J → 0, any

cluster point �y� q� of ��yk� qk��k∈KI�J satisfies

yI = 0� yJ = uJ � QT
j y −AT

j q = −cj ∀j ∈ K�
y � 0� yL � uL� Ay = b�

(13)
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Thus, this linear system has a solution. Let 0I�J denote the set of solutions for (13).
Since �xk�pk� is a solution of (11), an error bound of Hoffman (1952) implies there
exists �x̄k� p̄k� ∈ 0I�J satisfying

��x̄k� p̄k�− �xk�pk�� � C1��skI � skJ � rkK�� ∀k ∈ KI�J � (14)

where C1 is a constant depending on Q, A, I , J only.
We claim that f is constant on each 0I�J . If �y� q� and �y′� q ′� both belong to

0I�J , then (13) yields

f �y′�− f �y� = 1
2
�y′ − y�TQ�y′ − y�+ �Qy + c�T �y′ − y�

= 1
2
�y′ − y�TQ�y′ − y�+ �Qy + c−ATq�T �y′ − y�

= 1
2
�y′ − y�TQ�y′ − y��

where the second equality uses A�y′ − y� = 0 and third equality uses the y′j = yj
for all j ∈ I ∪ J and QT

j y − AT
j q = −cj for all j �∈ I ∪ J . A symmetric argument

yields

f �y�− f �y′� = 1
2
�y − y′�TQ�y − y′��

Combining the above two equalities yields f �y′� = f �y�.
For any k ∈ KI�J , we have

�Qx̄k + c�T �xk − x̄k�

= �Qx̄k + c−AT p̄k�T �xk − x̄k�

=∑
j∈I
�QT

j x̄
k + cj −AT

j p̄
k�xkj +

∑
j∈J
�QT

j x̄
k + cj −AT

j p̄
k��xkj − uj�

=∑
j∈I
�QT

j �x̄
k − xk�−AT

j �p̄
k − pk�+ rkj �s

k
j −

∑
j∈J
�QT

j �x̄
k − xk�

−AT
j �p̄

k − pk�+ rkj �s
k
j �

where the first equality usesA�xk− x̄k�=0, and the second equality uses �x̄k� p̄k�∈
0I�J . This together with

f �xk�− f �x̄k� = 1
2
�xk − x̄k�TQ�xk − x̄k�+ �Qx̄k + c�T �xk − x̄k�
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and the definition of ,k yield

�f �xk�− f �x̄k��

=
∣∣∣∣∣12�xk − x̄k�TQ�xk − x̄k�+

(∑
j∈I
�QT

j �x̄
k − xk�−AT

j �p̄
k − pk��skj + ,kj

)

−
(∑
j∈J
�QT

j �x̄
k − xk�−AT

j �p̄
k − pk��skj + ,kj

)∣∣∣∣∣
�

1
2
��xk − x̄k�TQ�xk − x̄k�� + ∑

j∈I∪J

(∣∣�QT
j �x̄

k − xk�−AT
j �p̄

k − pk��skj
∣∣+ �,kj �

)
� C2�xk − x̄k�2 + ∑

j∈I∪J

(∥∥�Qj�Aj�
∥∥��x̄k� p̄k�− �xk�pk��skj + �,kj �

)
� C2C

2
1�,k�1 +

∑
j∈I∪J

∥∥�Qj�Aj�
∥∥C1�,k�1/2

1 skj + �,k�1

� C2C
2
1�,k�1 +C1�,k�1/2

1

∑
j∈I∪J

∥∥�Qj�Aj�
∥∥√�,kj � + �,k�1�

where C2 is a constant depending on Q only, the third inequality uses (14) and
(12), the last inequality uses (10) and k ∈ KI�J . It follows that

�f �xk�− f �x̄k�� � CI�J�,k� ∀k ∈ KI�J � (15)

where CI�J is a constant depending on Q�A, I� J only. Let C be the maximum of
CI�J over all pairs I� J such that KI�J is infinite.

Since �f �xk�� ↓ * and, by (9), �,k�→ 0, it follows from (15) that �f �x̄k��k∈KI�J →
*. Since x̄k ∈ 0I�J for all k ∈ KI�J and f is constant on 0I�J , this implies
f �x̄k� = * for all k ∈ KI�J . This together with (15) and CI�J � C yields

f �xk�− * = f �xk�− f �x̄k�

� C�,k�
� 2C�1+ t̄���f �xk−1�− f �xk��/��

for all k ∈ KI�J , where the last inequality uses (9). It follows that

0 � f �xk�− * �
2C�1/�+ t̄�

1+ 2C�1/�+ t̄�
�f �xk−1�− *��

This is true for all k ∈ KI�J and all pairs I� J such that KI�J is infinite. Since each
k ∈ �0�1� � � � � belongs to KI�J for some I� J , then this is true for all k sufficiently
large. �
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4. Global Convergence: Box Constrained Case

In this section, we consider the important box-constrained case, i.e., m = 0. In
this case, (1) is primal nondegenerate. We say that a principal submatrix QJJ of
Q (∅ �= J ⊆ �1� � � � � n�) is maximally psd if QJJ 
 0 and QJJ is not a principal
submatrix of any other positive semidefinite principal submatrix ofQ. We consider
the following assumption on Q:

QJi ∈ Range�QJJ � ∀i �∈ J whenever QJJ is maximally psd� (16)

Roughly speaking, (16) says that Q is rank dominant with respect to its maximally
psd principal submatrices. It is readily seen that (16) is satisfied whenever

(a) Q 
 0 (since Q is the only maximally psd principal submatrix of Q)

or (b)Q � 0 (since any positive semidefinite principal submatrixQJJ must be the
zero matrix, in which case QJi = 0 for all i)

or (c) Q is nondegenerate, i.e., every principal submatrix of Q is nonsingular

or (d) all diagonal entries of Q are negative (since Q has no positive semidefinite
principal submatrix)

or (e) QJJ 
 0 and Qjj < 0 for all j �∈ J , for some J ⊆ �1� � � � � n�.

In particular, the example of Tseng and Ye (2000) satisfies (16). Thus, the class of
Q satisfying (16) is large.

By using Lemmas 1 and 2, we show below that, under assumption (16), �dk�2

is in the order of the decrease in the f -value.

LEMMA 3 Assume m = 0 and Q satisfies (16). If �xk� is bounded, then either
xk is a global optimal solution of (1) for some k or else there exists constant
c > 0 such that �dk� � c

√
2k for all k = 1�2� � � � , where 2k

�= max�f �xk−1�−
f �xk�� f �xk�− f �xk+1��.

Proof. Assume �xk� is bounded and xk is not a global optimal solution of (1) for
all k. We will argue that �dk� = O�

√
2k� by contradiction. Suppose there exists a

subsequence K ⊆ �1�2� � � � � such that

�dk�√
2k

→� as k→ �� k ∈ K�

By passing to a subsequence if necessary, we can assume that, for each j, either
��dkj �/

√
2k�k∈K →� or ��dkj �/

√
2k�k∈K is bounded. Let

J̄
�=
{
j ∈ �1� � � � � n� � ��dkj �/

√
2k�k∈K → �

}
�
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Since �dkj �/skj � � for all j, this implies that

skj√
2k

→� as k→�� k ∈ K� ∀j ∈ J̄ � (17)

Then, for all j ∈ J̄ , we have from Lemma 2 and tk−1 � t̄ and (8) that skj �rkj � �
�1+ t̄��sk−1

j �rkj � � 2�1+ t̄��2k/�, so that

�rkj �√
2k

�
2�1+ t̄��

�

√
2k

skj
→ 0 as k→ �� k ∈ K� (18)

Since �xk� is bounded and �f �xk�� ↓, then �f �xk�� converges so �2k�→ 0. Since
(18) holds for all j ∈ J̄ , this implies �rk

J̄
�k∈K → 0.

We claim that QJ̄J̄ 
 0, i.e., there does not exist a u ∈ �n satisfying

uTQu < 0 and uj = 0 ∀j �∈ J̄ �

If such u exists, then by normalizing u if necessary we can assume that �u� = �.
Then, letting

d̃k
�= �min

j∈J̄
skj �u

for all k ∈ K, we have
��Sk�−1d̃k� � ��

so d̃k is a feasible solution of (3). Thus, using (2) and (4), we have

f �xk+1�− f �xk� � f �xk + dk�− f �xk�

= 1
2
�dk�TQdk + �f�xk�Tdk

�
1
2
�d̃k�TQd̃k + �f�xk�T d̃k

= 1
2
�d̃k�TQd̃k + �rk�T d̃k

= 1
2
�min
j∈J̄

skj �
2uTQu+ �min

j∈J̄
skj �
∑
j∈J̄
r kj uj�

and it follows from (17) and (18) that

f �xk+1�− f �xk�

�minj∈J̄ s
k
j �

2
�

1
2
uTQu+∑

j∈J̄

r kj

�minj∈J̄ s
k
j �
uj →

1
2
uTQu < 0 as k→ �� k ∈ K�

Since �minj∈J̄ s
k
j �

2/2k →� as k→ �, k ∈ K, this implies

f �xk�− f �xk+1�

2k
→ � as k→ �� k ∈ K�
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a contradiction of the definition of 2k.
Since QJ̄J̄ 
 0, there exists J ⊆ �1� � � � � n� such that J̄ ⊆ J and QJJ is

maximally psd. Let J c
�= �1� � � � � n� \ J and J̄ c

�= �1� � � � � n� \ J̄ . Then, by (16),

QJJ = CTC and QJJc = CTCE

for some suitable matrices C and E. Let C̄ and C̃ denote the matrices comprising
the columns of C corresponding to J̄ and J \ J̄ , respectively. Thus, for any d with
dJ̄c = dk

J̄c
, we have

dTQd = �dJ �
TQJJdJ + 2�dJ �

TQJJcdJc + �dJc �
TQJcJcdJc

= �CdJ�2 + 2�CdJ�
T �CEdJc�+ �dJc �

TQJcJcdJc

= �CdJ +CEdkJc�2 − �CEdkJc�2 + �dkJc �
TQJcJcd

k
Jc

= �CdJ +CEdkJc�2 + 5k

= �C̄dJ̄ + C̃dk
J\J̄ +CEdkJc�2 + 5k

= �C̄dJ̄ + hk�2 + 5k� (19)

where 5k
�= �dkJc �

TQJcJcd
k
Jc − �CEdkJc�2 and hk

�= C̃dk
J\J̄ + CEdkJc . Since

�dkj �/
√
2k is bounded for all k ∈ K and all j ∈ J̄ c = �J \ J̄ � ∪ J c, then �hk�/√2k

is bounded for all k ∈ K. Also,

rk
J̄
= �f�xk�J̄

= QJ̄Jx
k
J +QJ̄Jcx

k
Jc + cJ̄

= C̄TCxkJ + C̄TCExkJc + cJ̄ �

Since �rk
J̄
�k∈K → 0, this implies in the limit

0 = C̄TCyJ + C̄TCEyJc + cJ̄ �

where y is any cluster point of �xk�k∈K . Thus,

rk
J̄
= C̄TC�xkJ +ExkJc − yJ −EyJc� = C̄TCek� (20)

where ek
�= xkJ +ExkJc − yJ −EyJc .

Then, for each k ∈ K, (19) yields

min
d�dJ̄c=dkJ̄c

1
2
dTQd+ �rk�Td (21)

⇐⇒ min
dJ̄

1
2
�C̄dJ̄ + hk�2 + �rk

J̄
�TdJ̄ = min

dJ̄

1
2
�C̄dJ̄ + hk�2 + �Cek�T C̄dJ̄

⇐⇒ min
dJ̄

1
2
�C̄dJ̄ + hk +Cek�2�
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This is an unconstrained convex quadratic minimization in dJ̄ . Since the objective
function is bounded from below, it has an optimal solution. Moreover, the necessary
and sufficient optimality condition is

C̄T C̄dJ̄ + C̄Thk + rk
J̄
= 0�

Since �hk�/√2k is bounded for k ∈ K and (18) holds for all j ∈ J̄ , the above
linear system has a solution d̂k

J̄
in the order of

√
2k. Then, defining d̂k

J̄ c

�= dk
J̄c

, we
see that d̂k is a global optimal solution of (21). Since dk is a feasible solution of
(21), this implies that

1
2
�d̂k�TQd̂k + �rk�T d̂k �

1
2
�dk�TQ�dk�+ �rk�Tdk�

Also, the definition of J̄ and �d̂k
J̄
� = O�

√
2k� for k ∈ K imply

��Sk�−1d̂k�2 − ��Sk�−1dk�2 =∑
j∈J̄

(
d̂kj

skj

)2

−
(
dkj

skj

)2

< 0

for all k ∈ K sufficiently large. Then, ��Sk�−1d̂k� < �, so d̂k is a global optimal
solution of (3). This implies (see (5) and Lemma 1) that xk + d̂k is a global optimal
solution of (1) with m = 0. Then f �xk+1� � f �xk + dk� = f �xk + d̂k�, where the
equality is due to both dk and d̂k being global optimal solutions of (3). Thus xk+1

is a global optimal solution of (1). This contradicts our assumption on �xk�. �

Using Theorem 1 and Lemma 3, we show below that, under assumption (16),
�xk� attains global convergence and local linear convergence to a point x satisfying
first-order and weak second-order optimality. Recall that a feasible solution x of
(1) with m = 0 satisfies 1st-order and weak 2nd-order optimality conditions if

QT
j x+ cj



� 0 ifxj = 0

� 0 ifxj = uj
= 0 else

and QJJ 
 0�

with J
�= �j ∈ �1� � � � � n� � 0 < xj < uj�; see Conn, Gould, and Toint (2000), Ye

(1992).

THEOREM 2 Assume m = 0 and Q satisfies (16). Then either (i) �xk� is not
bounded or (ii) xk is a global optimal solution of (1) for some k or (iii) �xk�
converges Q-linearly to some limit point x� satisfying first-order and weak second-
order optimality conditions for (1).

Proof. Suppose �xk� is bounded and xk is not a global optimal solution of (1)
for all k. Since �f �xk�� is non-increasing, then �f �xk�� converges. By Theorem
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1, �f �xk�� converges at a R-linear rate. Then �2k� → 0 Q-linearly, where 2k is
defined as in Lemma 3. Thus �

√
2k� → 0 Q-linearly and hence, by Lemma 3 and

(2) and 1 � tk � t̄, ��xk+1 − xk��→ 0 Q-linearly. Thus, �xk� converges Q-linearly
to some limit point x�. Then �rk� also converges. The conclusion then follows
from Theorem 2 of Ye (1992), slightly modified to take into account the upper
bound constraints x � u. �

It is an open question whether the assumptions of m = 0 and (16) in Theorem 2
can be relaxed. Perhaps the (highly nontrivial) analysis of Monteiro and Tsuchiya
(1998) for the convex case, together with Theorem 1 and ideas from the proof of
Theorem 2, can be applied to tackle this question. This is a direction for future
research.

5. Numerical Experience

For LP, the practical performance of the AS algorithm has been well studied, e.g.,
Monma and Morton (1987), although now a days predictor-corrector primal-dual
interior point methods are preferred. For convex QP, some numerical experience
with a version of the AS algorithm is reported in Bonnans and Bouhtou (1995).
For nonconvex QP, we are unaware of any published computational study of the
AS algorithm. To gain better understanding of this issue, we describe in this section
a Matlab implementation of the AS algorithm (2)–(4) for the box-constrained case,
and we report our preliminary numerical experience with it.

In our Matlab implementation, we set � = 0�95 and t̄ = 10. Each subprob-
lem (3) is solved using the Moré-Sorensen method, as described in Section 7.3
of Conn et al., (2000), with a precision of 10−12. The AS algorithm is initialized
with x0 = u/2 and terminates at iteration k when the residual

∥∥xk −max�0�min
�u�xk − �f�xk���

∥∥ is below the threshold 10−7. For test problems, we use the
nonconvex (indefinite) box-constrained QP problems, with n = 100 and varying
condition number (ncond) and number of negative eigenvalues (negeig) ofQ, gen-
erated as described on page 392 of Moré and Toraldo (1989). Table 1 tabulates the
performance of the AS algorithm (2)–(4) on these problems, showing the iteration
count and the residual on termination. It can be seen that the performance of the AS
algorithm is relatively insensitive to ncond and negeig, requiring number of itera-
tions ranging from 21 to 64. In contrast, the active-set gradient-projection method
of Moré and Toraldo seems to be more sensitive to ncond and negeig (see page
398 of Moré and Toraldo, 1989), requiring number of iterations ranging from 1 to
141, depending also on the starting point. Of course, caution must be exercised
in comparing the methods since the work per iteration, the starting points, the
termination criterion, and the quality of the generated (local) solutions are not the
same.
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Table 1. Iteration counts and residuals on termination of the AS algorithm
on nonconvex Moré-Toraldo test problems

ncond negeig

10 25 50 90

0 35/1 · 10−8 45/3 · 10−8 42/1 · 10−9 55/4 · 10−12

3 61/7 · 10−11 56/1 · 10−8 43/4 · 10−10 52/2 · 10−11

6 42/6 · 10−12 59/1 · 10−9 60/1 · 10−11 21/4 · 10−8

9 64/4 · 10−12 55/1 · 10−11 62/1 · 10−11 21/3 · 10−8

12 61/2 · 10−11 62/5 · 10−12 52/4 · 10−14 57/2 · 10−12
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